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Today's leading stochastic prediction models are parameter-rich supervised dNN or
unsupervised foundational models — both are major engineering achievements
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But the models have major weaknesses which become apparent immediately when they
get used out of context or for the wrong purpose

dNN limitations
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Why Did Facebook Shut Down Artificial 2. Ek?Ch quelcijs tied to s?ecif.ic training data, and
Intelligence? the training data are often inadequate, or

available only in insufficient quantities.

3. Each model has user-specified training hyper-
parameters and optimisation algorithms.

4. Cases where adequate — which means
representative — training data are available in

sufficient quantities are few.

5. We cannot obtain adequate models of the
behaviour of animate and inanimate complex

systems in open environments.
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Some of the Al limitations can be overcome by using prior knowledge as input for the
algorithms

Enhancing machine learning with
prior knowledge

p(0,y) = p(0)p(y|0)

Prior knowledge [ p(0)] can be used to restrict a
stochastic space in such a way that models
learned from training samples drawn from this
space have a higher accuracy than models
that do not do so.

Prior knowledge can be formulated using explicit
stochastic networks.

But it can also be provided using applied ontology.
often described as "knowledge graph” in the
computer science literature.



Ontologies can be used in multiple ways to enhance statistical learning — in biology,
AlfaFold is an example of sophisticated class feature usage

Usage of ontologies for statistical learning

Paradigms

Summary

Categories

Mapping-based

These methods project the input and/or the
class into a common vector space where
a sample is close to its class w.r.t. some

distance metric, and prediction can be
implemented by searching the nearest class.

Input Mapping

Class Mapping

Joint Mapping

Data Augmentation

These methods generate samples or
sample features for the unseen classes,
utilizing KG auxiliary information.

Rule-based

Generation Model-based

Propagation-based

These methods propagate model parameters
or a sample’s class beliefs from the
seen classes to the unseen classes via a KG.

Model Parameter
Propagation

Class Belief Propagation

Class Feature

These methods encode the input and the class
into features often with their KG contexts
considered, fuse these features and feed them
directly into a prediction model.

Text Feature Fusion

Multi-modal Feature
Fusion

Source: J. Chen et al. (2022) arXiv preprint arXiv:2112.10006v5



http://128.84.21.203/abs/2112.10006v5

AlphaFold, an encoder-decoder sequential dNN, outperformed other approaches to
protein 3D structure prediction in the CASP14 competition

Al in biomedical research: Protein folding example
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a. The performance of AlphaFold on the CASP14 dataset (n = 87 protein domains) relative to the
top-15 entries (out of 146 entries).
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Source: Jumper et al. (2021) Highly accurate protein structure prediction with AlohaFold. Nature.
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The core idea of AlphaFold is to view the prediction of protein structures as a graph
inference problem in 3D space
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Source: Jumper et al. (2021) Highly accurate protein structure prediction with AlohaFold. Nature.
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AlphaFold directly predicts the 3D coordinates of the heavy atoms for a given protein
using the sequence, sequences homology and crystallography results as inputs
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AlphaFold 2021 Input features

Multiple homology-based Crystallography Information for
sequence alignment homology cluster

Each mmCIF file can be seen as an ontology of the protein structure
it describes, and the many mmCIF files from an ontology of the
Protein Data Bank (PDB). The collection of mmCIF files is structured
into protein homology families, and as UniProt and PDB develop,
more and more of the hierarchical ontology structure incorporated
info PRO will become explicit in these resources, too.



AlphaFold is impressive for examples with high homology to known structures

AlphaFold 2021: Achievement example

a Putative active site is
solvent-accessible

11DQ = G6Pase-o G6Pase-p

"To our knowledge, no experimental structure [of Glucose-6-phosphatase] exists, but previous studies have attempted to
characterize the transmembrane topology and active site. [..] In the G6Pase-a binding pocket face, opposite the residues
shared with the chloroperoxidase, we predict a conserved glutamate (GIullO) that is also present in our G6Pase-B
prediction (Glul0S) but not in the chloroperoxidase (Fig. 3a). The glutamate could stabilize the binding pocket in a closed
conformation, forming salt bridges with positively charged residues there."

Tunyasuvunakool et al (2021) Highly accurate protein structure prediction for the human proteome, Nature.
https://doi.org/10.1038/s41586-021-03828-1



AlphaFold is mostly limited to predicting proteins which are homologous to known
structures and for which rich homology groups are available
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The success of AlphaFold, which models known structure families, will enhance the usage
of ontologies in statistical learning

AlphaFold 2021: design style, assumptions and results
= dNN design is like alchemy — input data and architecture are chosen in a heuristic manner using different patterns until a
design emerges that can tackle the problem and yield good predictions that can also cope with independent test data

= AlphaFold is also made like this, but it contains some design decisions which show the nature of the cognitive style of this
scientific community:

o The core assumptions about the spatial relationships between amino acids totally abstract the biological reality of
the protein folding, which is a highly contextual process depending on multiple adjuvant proteins in the
endoplasmatic reticulum

o Instead, simple mathematical (triangular) relationships between the AA residues are used to design the AA-matrix
transformations

o The operations performed on the MSA representation are even less motivated by biology

= Nevertheless, the performance on proteins homologous to known structures is excellent, illustrating once more the
excellent ability of dNN to identify regular, recurring patterns

= What the dNN models is the conversation of protein folding mechanisms in evolution as far as we have learned about
it from crystallography experiments

= AlphaFold will enhance the usage of ontologies in statistical learning



Thanks for your interest
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The input features characterise the AA sequence, the MSA clustering results and the
crystallography properties

Table 1 | Input features to the model. Feature dimensions: N is the number of residues, Ny is the
number of MSA clusters, Nexra_seq iS the number of additional unclustered MSA sequences, and Nigmp is the

number of templates.

Feature & Shape

Description

Feature & Shape Description
aatype One-hot representation of the input amino acid sequence (20 amino
[Nres, 21] acids + unknown).

cluster_msa
[Nclusl, Nrem 23]

cluster_has_deletion
[Nclust 3 Nres 3 1]

cluster_deletion_value
[Nclusta NreSa 1]

cluster_deletion_mean
[Nclusta Nres’ 1]

cluster_profile
[Nclusl; Nres, 23]

One-hot representation of the msa cluster centre sequences (20 amino
acids + unknown + gap + masked_msa_token).

A binary feature indicating if there is a deletion to the left of the residue
in the MSA cluster centres.

The raw deletion counts (the number of deletions to the left of every
position in the MSA cluster centres) are transformed to the range [0, 1]
using 727 arctan % where d are the raw counts.

The mean deletions for every residue in every cluster are computed as
1§~ | dij where n is the number of sequences in the cluster and d;;
is the number of deletions to the left of the ith sequence and jth residue.
These are then transformed into the range [0, 1] in the same way as for

the cluster_deletion_value feature above.

The distribution across amino acid types for each residue in each MSA
cluster (20 amino acids + unknown + gap + masked_msa_token).

extra_msa
[Nexua_seq-, Nres, 23]

extra_msa_has_deletion
[NCXLN!_SCQ$ NI'CS: 1]

extra_msa_deletion_value
[Nex!:a_scm Nres 3 1]

template_aatype
[Nlcmpl ) Nren 22]

template_mask
[Nlempl ) Nres]

template_pseudo_beta_mask
[Ntempl ) Nrcs]

template_backbone_frame_mask

[Nlempla Nrcs]

template_distogram
[Nlcmpl ) Nrcs~, Nrcs; 39]

template_unit_vector
[Nlcmpl ) Nrcs~, Nres: 3]

template_torsion_angles
[Nlempl ) Nrcs= 14]

template_alt_torsion_angles
[Ntempl ) Nrcs: 14]

template_torsion_angles_mask

[Nlcmpl ) Nren 14]

residue_index
[NKCS]

One-hot representation of all MSA sequences not selected as cluster
centres (20 amino acids + unknown + gap + masked_msa_token).

A binary feature indicating if there is a deletion to the left of the residue
in the extra MSA sequences.

The raw deletion counts to the left of every residue in the extra_msa,
converted to the range [0,1] using the same formula as for clus-
ter_deletion_value.

One-hot representation of the amino acid sequence (20 amino acids +
unknown and gap).

Mask indicating if a template residue exists and has coordinates.

Mask indicating if the beta carbon (alpha carbon for glycine) atom has
coordinates for the template at this residue.

A mask indicating if the coordinates of all the required atoms to com-
pute the backbone frame (used in the template_unit_vector feature) ex-
ist.

A one-hot pairwise feature indicating the distance between beta car-
bons (alpha carbon used for glycine) atoms. The pairwise distances are
discretized into 38 bins of equal width between 3.25 A and 50.75 ;\;
and one more bin contains any larger distances.

The unit vector of the displacement of the alpha carbon atom of
all residues within the local frame of each residue. These local
frames are computed in the same way as for the target structure, see
subsubsection 1.8.1. (Current models were trained with this feature set
to zero.)

The 3 backbone torsion angles and up to 4 side-chain torsion angles for
each residue represented as sine and cosine encoding.

Alternative torsion angles for side chain parts with 180°-rotation sym-
metry.

A mask indicating if the torsion angle is present in the template struc-
ture.

The index into the original amino acid sequence.




The input features are transformed in the first layer of the neural network
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The "Evoformer" component refines a matrix representation of the processed MSA and the
distance matrix of the input sequence's residue pairs

AlphaFold 2021: Evoformer Module input transformation chain
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= MSA: evolutionary information

= Pair representation: spatial relationships between the amino-acids within the protein

= (Attention: see next slide)

» The Evoformer block exchanges information within the MSA and pair representations that enables the modelling of
interactions between the evolutionary and spatial relationships

Source: Jumper et al. (202 1) Highly accurate protein structure prediction with AlphaFold. Nature.
https://doi.org/10.1038/541586-021-03819-2



The AA-residue distance matrix is refined using a geometric triangle logic

AlphaFold 2021: AA-residue representation refinement Step 1
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Source: Jumper et al. (202 1) Highly accurate protein structure prediction with AlphaFold. Nature.
https://doi.org/10.1038/541586-021-03819-2



Attention is used to model contextual relationships between the AA mimicing their interactions

upon folding
AlphaFold 2021: AA-residue representation refinement Step 2
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Source: Jumper et al. (202 1) Highly accurate protein structure prediction with AlphaFold. Nature. https://doi.org/10.1038/54 1586-021-03819-2



The structure decoder block of the sequential dNN assigns a rotation and translation to each
residue before computing

AlphaFold 2021: Structure Block
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The 3D backbone structure is represented as N.independent rotations and translations, each with respect to the
global frame (residue gas) (Fig. 3e). These rotations and translations—representing the geometry of the N-Ca-C

atoms—oprioritize the orientation of the protein back- bone so that the location of the side chain of each residue is
highly constrained within that frame.

Source: Jumper et al. (202 1) Highly accurate protein structure prediction with AlphaFold. Nature.
https://doi.org/10.1038/541586-021-03819-2



The final steps of the network compute side chain angles and the pre-residue positions

a .30

AlphaFold 2021: Structure Block 0.25 | |
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Predictions of side-chain y angles as well as the final, per-residue
accuracy of the structure (pLDDT) are computed with small per-
residue networks on the final activations at the end of the network,
The estimate of the TM-score (pTM) is obtained from a pairwise error
prediction that is computed as a linear projection from the final pair
representation. The finalloss(which we term the frame-aligned point
error (FAPE) (Fig.3f)) compares the predicted atom positions to the
true positions under many different alignments.

Histogram of backbone r.m.s.d. for full chains (Ca
r.m.s.d. at 95% coverage). Error bars are 95%
confidence intervals (Poisson). This dataset
excludes proteins with a template (identified by
hmmsearch) from the training set with more than
40% sequence identity covering more than 1% of
the chain (n = 3,144 protein chains).

Source: Jumper et al. (202 1) Highly accurate protein structure prediction with AlphaFold. Nature. https://doi.org/10.1038/54 1586-021-03819-2



Intrinsic protein disorder does not explain AlphaFold's insufficient coverage of the human
proteome - rather, it cannot cope with unknown and challenging structures
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"The other substantial limitation that we have observed is that AlphaFold is much weaker for proteins that have few
intfra-chain or homotypic contacts compared to the number of heterotypic contacts. " — in other words, the model, like
all sequence model, suffers from its context myopy which is able only to take into account a fairly limited context.
Intrinsic disorder of proteins in solution (protein domains which do not form a stable 3D conformation) alone cannot
explain the prediction gap in AlphaFold.

Tunyasuvunakool et al (2021) Highly accurate protein structure prediction for the human proteome, Nature. https://doi.org/10.1038/s41586-021-03828-1
* At the per-protein level, 43.8% of proteins have a confident prediction on at least three quarters of their sequence, while 1,290 proteins contain a substantial region (more
than 200 residues) with pLDDT = 70 and no good template.



