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The origin of bio-ontologies, and GO (1999)

“Functional conservation requires a common language for
annotation”

“The first comparison between two complete eukaryotic
genomes (budding yeast and worm) revealed that a sur-
prisingly large fraction of the genes in these two organisms
displayed evidence of orthology”

“This astonishingly high degree of sequence and functional
conservation presents both opportunities and challenges”

Ashburner et al., 2000



Solving the integration problem

Design decisions:

taxonomy “to allow automatic transfers of annotation”
between model organisms

“to be able to organize, describe, query and visualize biological
knowledge at vastly different stages of completeness”

Ashburner et al., 2000
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Enrichment analysis (2000–)
Characterizing gene sets

What characterizes a list of genes?

Successful interpretation relies on accurate propagation of
annotations.
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Semantic similarity (2003–)
Comparing proteins and sets of proteins
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Semantic similarity (2003–)

Semantic similarity

retrieval on databases (Lord et al., 2003)

predict disease genes (“guilt by association”)

differential diagnosis

All rely on accurate inferences in the ontology!



Fixing ontology problems (2003–2007)

ontology-based analysis methods rely on accurate and
complete inferences

the “true path rule”
aggregation of annotations along taxonomy/partonomy

incorrect inferences result in incorrect scientific
results/interpretations:

is-a vs. part-of; necessary part vs contingent part; temporal
dependency of part-of; causation vs part-of; absence, lacking
parts
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Scaling up (2008–)

high throughput technologies

more data, more domains ⇒ more ontologies

manual curation no longer scales, too costly

options:

automated construction of ontologies
ontology design patterns
lexical patterns

relies on tools to validate constructed knowledge

automated reasoners



Scaling up (2008–)

Increasing the scale of bio-ontologies:

modularization

MIREOT and associated tools

light-weight reasoners

OWL 2 EL (Elk, Konklude)
only consider some (relatively weak) axioms



Consistency is no longer an attainable goal

OBO Foundry:
Ontology Unsatisfiable Class Count
CHEBI 37
GO 565
OBI 34

Other:
Ontology Name Unsatisfiable Class Count
Unified Phenotype Ontology (UPHENO) 106,126
Monarch Disease Ontology (MONDO) 97,619
Ontology for MIRNA Target (OMIT) 63,015
Molecular Process Ontology (MOP) 57,355
Name Reaction Ontology (RXNO) 57,330
Human Phenotype Ontology (HP) 46,075
Mammalian Phenotype Ontology (MP) 43,806
Cell Ontology (CL) 34,685
Ontology of Biological Attributes (OBA) 26,523
Ontology of Adverse Events (OAE) 20,566

Slater et al, 2020
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Knowledge graphs (2015–)

Focus on linking, not semantics

Ontologies are “projected” onto a graph

full circle

Chen et al., 2021 (left). OBOGraphs Github (right)



Ontologies and knowledge graphs
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Timeline

Biology/Bioinformatics

First eukaryotes sequenced

Microarray experiments

High throughput
experiments

Clinical integration

Machine learning and AI

Ontologies

Gene Ontology

(Bio-)Ontological
foundations

Dealing with Big Data

Knowledge graphs

???

Will ontologies be only data providers for ML in biology?



Cool things to do with knowledge graphs

head + rel = tail

⇒ head + rel− tail = 0

head, rel, tail ∈ ℜn

for all triples in a graph
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Cool things to do with knowledge graphs

Figure from: J Chen et al., 2021.

Object property
Source type Target type Without reasoning With reasoning

F-measure AUC F-measure AUC

has target Drug Gene/Protein 0.94 0.97 0.94 0.98
has disease annotation Gene/Protein Disease 0.89 0.95 0.89 0.95
has side-effect∗ Drug Phenotype 0.86 0.93 0.87 0.94
has interaction Gene/Protein Gene/Protein 0.82 0.88 0.82 0.88
has function∗ Gene/Protein Function 0.85 0.95 0.83 0.91
has gene phenotype∗ Gene/Protein Phenotype 0.84 0.91 0.82 0.90
has indication Drug Disease 0.72 0.79 0.76 0.83
has disease phenotype∗ Disease Phenotype 0.72 0.78 0.70 0.77
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Ontologies are more than knowledge graphs

Ontologies enable

deductive inference

complex, logical assertions and queries

test of consistency

model theory

But there are not many methods in machine learning that can
utilize these properties ⇒ we first need to develop new methods!
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EL Embeddings

Intelligent decisions need a “world model”

“know” facts that are true in the world
“infer” facts that are necessarily true

can neural networks have a world model?

“model-generating” embedding:

maps symbols into ℜn while preserving their model-theoretic
semantics



EL Embeddings

Male ⊑ Person

Female ⊑ Person

Father ⊑ Male

Mother ⊑ Female

Father ⊑ Parent

Mother ⊑ Parent

Female ⊓Male ⊑ ⊥
Female ⊓ Parent ⊑ Mother

Male ⊓ Parent ⊑ Father

∃hasChild .Person ⊑ Parent

Parent ⊑ Person

Parent ⊑ ∃hasChild .⊤
Kulmanov et al., 2020. IJCAI



Single models are not enough for entailment

distinguishing possibility and necessity

true in “some” worlds
true in “all” worlds

0
1



FALCON: Fuzzy generation of models for ALC

Algorithm 1 Generating CI for a Concept Description C .
Function Calculate m(·, CI )

Require: Embedding function fe ; Multilayer Perceptron MLP; Activation function σ; Sampling size k; Fuzzy oper-
ators θ, κ, ν; Individuals I = In ∪ Iℜn

Sample X with |X | = k from I

Compute m(X , CI ) := {m(x, CI )|x ∈ X}:
if C is a concept name then

m(X , CI ) = σ(MLP(fe (C), fe (X )))
else if C = C1 ⊓ C2 then

m(X , (C1 ⊓ C2)
I ) = θ(m(X , CI

1 ),m(x, CI
2 ))

else if C = C1 ⊔ C2 then

m(X , (C1 ⊔ C2)
I ) = κ(m(X , CI

1 ),m(X , CI
2 ))

else if C = ¬D then
m(X , (¬D)I ) = ν(m(X ,DI ))

else if C = ∃R.D then
Sample Y with |Y | = k from I

m(X , (∃R.D)I ) = maxy∈Y θ(m(y,DI ),m((X , y), RI ))

with m((x, y), RI ) = σ(MLP(fe (x) + fe (R), fe (y)))
else if C = ∀R.D then

Sample Y with |Y | = k from I

m(X , (∀R.D)I ) = miny∈Y κ(ν(m(y,DI )),m((X , y), RI ))

with m((x, y), RI ) = σ(MLP(fe (x) + fe (R), fe (y)))
end if
return m(X , CI )



FALCON: Fuzzy generation of models for ALC

Differentiable fuzzy logic to generate single models

using a recursive forward function to handle arbitrary concept
descriptions

sound and complete:

generates a model if and only if a model exists

semantic entailment:

T |= ϕ iff Mod(T ) ⊆ Mod({ϕ})
enables:

reasoning under inconsistency, paraconsistent reasoning
combining prediction and deduction
knowledge-based zero-shot prediction

Tang et al., 2022



Where ontologies can help: little or no training data

some domains have little or no training data available:

metagenomic dark matter (orphan proteins)
rare diseases
genotype–phenotype relations in most populations
emerging pathogens

will benefit from knowledge-enhanced predictions

prediction + inference
approximate inference



Zero-shot protein function prediction
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Kulmanov & Hoehndorf, DeepGOZero: Improving protein function prediction from sequence and zero-shot learning

based on ontology axioms. ISMB, 2022.



Zero shot protein function prediction
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Zero-shot prediction performance

GO:0030170, AUC = 0.990
GO:0030170 (all), AUC = 0.930
GO:0030170*, AUC = 0.997
GO:0051897, AUC = 0.822
GO:0051897 (all), AUC = 0.873
GO:0051897*, AUC = 0.894
GO:0005925, AUC = 0.661
GO:0005925 (all), AUC = 0.738
GO:0005925*, AUC = 0.821



Injecting background knowledge: DeepViral



Injecting background knowledge: DeepViral

Wang et al., 2021



DeepSVP



DeepSVP

Althagafi et al., 2022



mOWL

high-performance software library for machine learning with
Semantic Web (OWL) ontologies

ontology embeddings, zero-shot predictions,
knowledge-enhanced predictions

Algorithms written in Python + Scala (OWLAPI), tuned for
performance

full access to OWLAPI from Python

https://github.com/bio-ontology-research-group/mowl

https://github.com/bio-ontology-research-group/mowl
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Ontologies and machine learning

exploiting axioms, removing incorrect axioms becomes more
and more relevant

very relevant now (see Sarah’s poster at the poster session)

as long as ontologies capture only “relatedness”, knowledge
graphs and knowledge graph analytics will suffice

negation and disjointness axioms are really useful for reducing
search space

ontologies should enable useful deductive inference ⇒ not
found in knowledge graphs

deduction is a hallmark of “intelligent” systems
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