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Abstract  

Background 

The current COVID-19 pandemic and the previous SARS/MERS outbreaks of 2003 and 

2012 have resulted in a series of major global public health crises. We must integrate the large 

and exponentially growing amount of heterogeneous coronavirus data to better understand 

coronaviruses and associated disease mechanisms, in the interest of developing effective and safe 

vaccines and drugs. Ontologies play an important role in standard-based knowledge and data 

representation, integration, sharing, and analysis. Accordingly, we initiated the development of 

the community-based Coronavirus Infectious Disease Ontology (CIDO) in early 2020.  

Results 

As an Open Biomedical Ontology (OBO) library ontology, CIDO is open source and 

interoperable with other existing OBO ontologies. CIDO is aligned with the Basic Formal 

Ontology and Viral Infectious Disease Ontology. CIDO has imported terms from over 30 OBO 

ontologies. For example, CIDO imports all SARS-CoV-2 protein terms from the Protein 

Ontology, COVID-19-related phenotype terms from the Human Phenotype Ontology, and over 

100 COVID-19 vaccines terms (authorized or in clinical trial) from the Vaccine Ontology. CIDO 

systematically represents variants of SARS-CoV-2 viruses and over 300 amino acid substitutions 

therein, along with over 300 diagnostic kits and methods. CIDO also describes hundreds of host-

coronavirus protein-protein interactions (PPIs) and the drugs that target proteins in the PPIs, and 

has been used to model COVID-19 related phenomena in areas such as epidemiology. The scope 

of CIDO was evaluated by visual analysis supported by a summarization network method. CIDO 

has been used in various applications such as term standardization, inference, natural language 

processing (NLP) and clinical data integration. We have applied the CIDO-represented amino 

acid variant knowledge analyze differences between SARS-CoV-2 Delta and Omicron variants. 

Using the integrative host-coronavirus PPIs and drug-target knowledge represented in CIDO, 

CIDO has been used to support drug repurposing for COVID-19 treatment.  

Conclusion   

CIDO represents entities and relations in the domain of coronavirus diseases with a 

special focus on COVID-19. It supports shared knowledge representation, data and metadata 

standardization and integration, and has been used in various applications.   
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Background 
Coronavirus diseases pose major crises to public health. In addition to the current 

Coronavirus Disease 2019 (COVID-19) pandemic, Severe Acute Respiratory Syndrome (SARS) 

[1] and Middle East respiratory syndrome (MERS) [2] are two other severe human coronavirus  

diseases that have occurred in the past two decades. The World Health Organization (WHO) 

declared the COVID-19 outbreak as a pandemic on March 11, 2020; at that time there were 

118,326 confirmed cases and 4,292 deaths globally [3]. As of April 27, 2022, the number of 

COVID-19 cases has risen to over 500 million confirmed cases, resulting in over 6 million 

deaths globally. The dramatic increase of COVID-19-related cases and deaths over two years 

illustrates the urgent need for collaborative research on coronavirus diseases, especially COVID-

19, by researchers around the world.    

Extensive COVID-19 research has been conducted since the start of the pandemic. For 

example, there have been over 250,000 COVID-19-related papers recorded in PubMed as of 

April 2022. These research articles cover various domains such as etiology, epidemiology, and 

biotechnology. The initial wave of research articles focused on characterization of the original 

Wuhan strain of SARS-CoV-2 [4], the molecular interactions of putative and confirmed SARS-

CoV-2 molecules [5],  and the unique disease phenotype of COVID-19 [6]. During this time, 

many novel and repurposed medical treatments were developed and authorized to treat or 

prevent COVID-19. This included research to develop effective COVID-19 vaccines [7] and 

COVID-19 drug treatments [8].  However, the emergence of new SARS-CoV-2 variants with 

unique traits prompted novel research investigating the fundamental molecular mechanisms of 

virulence and transmission associated with these variants [9].  

Throughout the COVID-19 pandemic, epidemiological data from across the globe has 

been collected for viral sequences and human demographics. In the era of Information 

Technology and big data, biomedical research has become data-intensive with the generation of 

increasingly large, complex, multidimensional, and diverse datasets. The explosion of valuable 

data and knowledge related to COVID-19 fits the 5Vs of big data (volume, veracity, velocity, 
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variety, and value) [10, 11] and represents a wealth of knowledge for SARS-CoV-2. However, 

these studies are often stored in non-interoperable data repositories which resist integration, 

creating a major bottleneck for COVID-19 research. The resultant non-harmonized data and 

knowledge cannot be easily analyzed by standard Artificial Intelligence (AI)/Machine Learning 

(ML) techniques. The development of computer-interpretable, integrative, interoperable 

ontologies can contribute to needed data harmonization.  

Such observations led to the development of a community-based, interoperable 

Coronavirus Infectious Disease Ontology (CIDO) for standardized and efficient representation, 

integration, and analysis of coronavirus disease data. CIDO was initiated by He and Yu in early 

2020 when the COVID-19 became endemic in China. CIDO was accepted into the Open 

Biomedical Ontology library in March 2020, and was initially reported in a Comment article in 

the journal Scientific Data [12]. In that article, CIDO was introduced as a community-driven 

open-source OBO library ontology providing standardized, computer-interpretable 

terminological content for various coronavirus infectious diseases, including their etiology, 

transmission, epidemiology, pathogenesis, host-coronavirus interactions, diagnosis, prevention, 

and treatment. Additionally, it was shown how host-coronavirus interaction mechanisms could 

be represented using CIDO resources and axioms, and how such representation could be used to 

aid in the identification of potential COVID-19 treatment options based on existing knowledge 

of drug mechanisms of action. Indeed, it was reported that CIDO provided instrumental guidance 

during literature mining processes in which 72 chemical drugs and 27 monoclonal or polyclonal 

antibodies that exhibit anti-coronavirus effects in in vitro or in vivo experimental studies, were 

identified. The Scientific Data article closed by inviting researchers from across the world to 

contribute to CIDO development and application. We are pleased to report that there has been an 

outpouring of community support, and substantial CIDO development and application since that 

time.  

CIDO was presented at the 2020 International Conference on Biomedical Ontology 

(ICBO-2020) [13]. Subsequently, authors AYL, YQH, SA, and WD organized a “Workshop on 

COVID-19 Ontologies” (WCO 2020) in October 2020 (https://github.com/CIDO-

ontology/WCO), which led to the on-going harmonization of 9 COVID-19 related ontologies. Of 

these ontologies, CIDO subsumed the COVID-19 Infectious Disease Ontology (IDO-COVID-

19) and initiated alignment with the Controlled Vocabulary for COVID-19 (COVoc). The 

https://github.com/CIDO-ontology/WCO
https://github.com/CIDO-ontology/WCO
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ontology harmonization effort was also presented in ICBO-2021 [14]. Since then, CIDO has 

been further developed to include more terms and relations in many areas, such as host responses 

to SARS-CoV-2 infection [15], host-coronavirus protein-protein interactions, and COVID-19 

diagnosis and vaccines. This journal manuscript provides a comprehensive introduction to the 

current version of CIDO, its development, and representative applications.  

 

Methods  

Coronavirus disease-related data collection 

Supplemental Table 1 provides a summary of our coronavirus disease-related data 

repository, comprising data collected from literature (primarily PubMed and PubMed Central) 

and from openly available databases. The classifications of viral variants and amino acid variants 

were obtained from GISAID (https://www.gisaid.org/), NextStrain (https://nextstrain.org/), and 

WHO. Anti-coronaviral drug information was taken primarily from DrugBank [16] and from 

data annotated using the Chemical Entities of Biological Interest (ChEBI) ontology [17], 

COVID-19 diagnostic testing data in this repository are derived from five major sources: (i) FDA 

EUA diagnostic testing website (https://www.fda.gov/medical-devices/coronavirus-disease-

2019-covid-19-emergency-use-authorizations-medical-devices/in-vitro-diagnostics-euas); (ii) the 

AdveritasDx database (http://adveritasdx.com/); (iii) the LOINC In Vitro Diagnostic (LIVD) 

Test Code Mapping for SARS-CoV-2 Tests produced by the collaboration of the FDA, CDC, 

IICC, Regenstrief Institute, and APHL (https://www.cdc.gov/csels/dls/sars-cov-2-livd-

codes.html), and (iv) COVID-19 diagnostic testing kits authorized for use in China (provided by 

YT). These resources are not integrated and are annotated in inconsistent ways. One major task 

of our work is to use CIDO to support COVID-19 data integration through consistent 

annotations.   

 

CIDO ontology development  

CIDO development followed OBO Foundry ontology development principles (e.g., 

openness and collaboration) (4), and utilized the eXtensible Ontology Development (XOD) 

strategy, which prescribes: ontology term reuse, semantic alignment, ontology design pattern for 

new term generation, and community effort [18]. CIDO’s development started with the reuse and 

alignment of terms and relations from existing ontologies using the Ontofox tool [19]. We used 

https://www.gisaid.org/
https://nextstrain.org/
https://www.fda.gov/medical-devices/coronavirus-disease-2019-covid-19-emergency-use-authorizations-medical-devices/in-vitro-diagnostics-euas
https://www.fda.gov/medical-devices/coronavirus-disease-2019-covid-19-emergency-use-authorizations-medical-devices/in-vitro-diagnostics-euas
http://adveritasdx.com/
https://www.cdc.gov/csels/dls/sars-cov-2-livd-codes.html
https://www.cdc.gov/csels/dls/sars-cov-2-livd-codes.html
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reference ontologies such as the Ontology for Biomedical Investigations (OBI) [20], Chemical 

Entities of Biological Interest (ChEBI) [17], Human Disease Ontology (DOID) [21], Human 

Phenotype Ontology (HP) [22], and Infectious Disease Ontology (IDO) [23] (Supplemental 

Table 2). CIDO terms are aligned under Basic Formal Ontology (BFO) [24], a top-level 

ontology conformant to the ISO/IEC standard 21838 (https://www.iso.org/standard/74572.html). 

BFO is a domain-neutral framework that has been adopted by more than 450 ontologies as 

starting point for the creation of terms and definitions in specific domains. It thereby provides a 

mechanism for overcoming interoperability issues which arise when the attempt is made to 

integrate ontologies deriving from different sources.  

For the generation of terms from domains ranging from amino acid variants to diagnostic 

medical kits, we developed relevant ontology design patterns and then used the Ontorat tool [25] 

to automate term generation. For manual term generation and editing, we used the Protégé-OWL 

editor [26], where new CIDO specific terms have International Resource Identifiers that start 

with “CIDO_” followed by 7 automatically generated digits.  

We worked closely with ontology development communities to support coronavirus 

related ontology development. For example, we worked with the Protein Ontology (PR) on 

generating PR representations of SARS-CoV-2 proteins which were subsequently imported into 

CIDO. We also periodically submitted issue trackers to other related ontology efforts, for 

example requests for over 40 specimen-related terms submitted to the Ontology for Biomedical 

Investigations (OBI) (https://github.com/obi-ontology/obi/issues/1176, also:  

https://github.com/CIDO-ontology/cido/issues/7). The relevant terms with OBI identifiers and 

definitions were then imported back into CIDO. Additionally, we have generated many new 

relations in CIDO to meet our needs, some of which have been proposed for inclusion in the 

OBO Relation Ontology (RO) [27]. 

CIDO is designed to support COVID-19 data FAIRness (i.e., findability, accessibility, 

interoperability, and reusability) [28, 29]. Our ontology development is primarily task-focused 

and use-case driven. For COVID-19 diagnosis modeling, for example, a team of clinical doctors, 

diagnosis domain experts, and ontologists, was formed to study COVID-19 diagnosis 

background [30, 31], collect and annotate available diagnosis kits, focus on specific diagnosis 

use cases such as [32], design the relevant ontology patterns, and then implement them in CIDO.  

 

https://www.iso.org/standard/74572.html
https://github.com/obi-ontology/obi/issues/1176
https://github.com/CIDO-ontology/cido/issues/7
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CIDO status, source code, deposition, and license 

CIDO source code is freely available with the CC-BY license on the GitHub website 

https://github.com/CIDO-ontology/cido. CIDO has been deposited to the Ontobee ontology 

repository (http://www.ontobee.org/ontology/CIDO) the BioPortal repository 

(https://bioportal.bioontology.org/ontologies/CIDO), and the OLS repository 

(https://www.ebi.ac.uk/ols/ontologies/cido).  

 

Visual analysis of CIDO by summarization network 

  The Ontology Abstraction Framework (OAF) tool [33] was used to generate a color 

image of the layout of the ontology hierarchy (Figure 1 in Supplemental File 1). To provide a 

more comprehensible visualization of the most recent version of CIDO, we used the Weighted 

Aggregate Partial-Area Taxonomy (WAT) summarization network analysis method [34]. By 

comparing this version with older versions of CIDO we were able to track the evolution of the 

ontology, as summarized in Supplemental File 1.  

 

CIDO applications  

In the present communication we describe several applications of CIDO. One use case is 

the comparative analysis of the shared and different amino acid variants between the Delta and 

Omicron variants, with the purpose of better understanding the mechanisms of coronavirus 

evolution, transmission, and virulence. Another use case is a SARS-CoV-2 drug repurposing 

study. Using the knowledge represented and classified in CIDO, we systematically queried the 

host-coronavirus protein-protein interactions, anti-coronavirus drugs, and protein targets of 

different drugs, with a purpose of identifying and designing possible drugs for optimized 

treatment performance.    

 

Results  

 

The upper level structure and design pattern of CIDO.    

Figure 1 lays out the high-level hierarchical structure of CIDO and shows the various 

imported external ontologies. Areas related to the coronavirus infectious disease represented by 

CIDO include: coronavirus taxonomy, coronavirus variants, genes and proteins and their 

https://github.com/CIDO-ontology/cido
http://www.ontobee.org/ontology/CIDO
https://bioportal.bioontology.org/ontologies/CIDO
https://www.ebi.ac.uk/ols/ontologies/cido
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mutations, phenotypes, diseases, epidemiology, diagnosis, host-coronavirus protein-protein 

interactions, vaccines, and drugs. All the terms are aligned under the top-level Basic Formal 

Ontology (BFO) (7) (Figure 1). CIDO imports terms from over 20 reference ontologies from the 

OBO ontology library, with the representative ontologies introduced in Supplemental Table 2 

and Figure 1.  

In addition to importing terms from existing ontologies, we have also generated many 

CIDO-specific terms e.g., resources for SARS-CoV-2 viral variants, amino acid mutations, and 

diagnostic medical device kits. New axioms, such as those linking different types of proteins and 

other molecules that are related to host-coronavirus protein-protein interactions (PPIs) and drug-

target interactions, have also been developed for CIDO. In the version released on August 1, 

2022, there are 370 relations used in CIDO, including 87 relations newly generated with 

“CIDO_” prefix. Admittedly, some of the newly generated relations in CIDO may be more 

suitable for the more general level Relation Ontology (RO) [27]; future research will involve 

further refinement of these relations  

Our previous Comment paper in Scientific Data [12] describes the general CIDO design 

pattern that lays out the relationships among selected major entities modeled in the ontology. In 

the next sections, we provide details on specific ontological modeling and representation 

provided in CIDO.  

 

Ontological classification of coronaviruses and coronavirus variants  

CIDO imports resources from the NCBITaxon to represent various coronaviruses and 

their relations [13]. SARS-CoV and SARS-CoV-2 belong to the Sarbecovirus, a subgenus of the 

genus Betacoronavirus. MERS-CoV belongs to Merbecovirus, a sibling to Sarbecovirus. Four 

human coronavirus strains (229E, NL63, HKU1, and OC43) cause mild common colds in 

humans, where 229E and NL63 belong to Alphacoronavirus, and HKU1 and OC43 belong to 

Embecovirus under Betacoronavirus.  

We have generated 39 CIDO specific classes to represent specific COVID-19 viral 

variants. CIDO defines distinct viral variants of SARS-CoV-2 based on 3 classification methods: 

GISAID clades [35], PANGO lineages [36], and WHO clades 

[https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/]. A viral variant is defined as 

a virus that has undergone variation such that there is a characteristic set of mutations in 

https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/
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comparison to the reference virus sequence. These variants include various genetic mutations 

resulting in changes in transmission, infectivity, and virulence as compared to the original 

Wuhan reference strain. The GISAID clades and PANGO lineages both utilize the same data set 

but utilize different clustering algorithms to designate specific variants. PANGO lineages also 

differ by defining characteristic mutations that occur in a majority of specific SARS-Cov-2 

variants while GISAID variants define universal mutations. The following examples illustrate 

these three hierarchies: 

‘SARS-CoV-2 Delta virus’: ‘is a’  some  ‘SARS-CoV-2 based on WHO classification’ 

‘SARS-CoV-2 BA.5 virus’ ‘is a’  some ‘SARS-CoV-2 based on PANGO lineage’ 

‘SARS-CoV-2 clade G virus’: ‘is a’ some ‘SARS-CoV-2 based on GISAID clades’ 

WHO utilizes GISAID clade and PANGO lineage representations as synonyms for 

epidemiologically relevant variants, designated either as a Variant of Concern (VoC) or as a 

Variant of Interest (VoI) [15]. VoIs are variants that are identified as having the potential to 

become VoCs through causing increased transmission or worse disease processes. VoCs remain 

designated as such until they are no longer prevalent.  

 

Ontological representation of SARS-CoV-2 proteins and genes  

CIDO imports terms for SARS-CoV-2 proteins from the Protein Ontology (PR) and 

terms for SARS-CoV-2 genes from the Ontology of Genes and Genomes (OGG), a simplified 

representation of which is shown in Figure 2. Gene terms are based on those found in the NCBI 

Gene database [37] while proteins are as given by UniProtKB [38] 

[https://www.uniprot.org/uniprot/?query=proteome:up000464024], with cross-reference 

information from NCBI RefSeq [https://www.ncbi.nlm.nih.gov/protein?term=(sars-cov-

2%20Wuhan-Hu-1%20AND%20refseq%5Bfilter%5D)]. CIDO represents only those genes that 

are described in NCBI Gene, and only those proteins (and their derivatives) that are described in 

UniProtKB. There are other protein open reading frames (ORFs) such as ORF2b (aka S.iORF1) 

[39], ORF-Sh and ORF-Mh [40], which are held in reserve, but they will be added should they 

gain experimental or database support. A full comparison between PR, RefSeq, and UniProtKB 

is given in Supplemental Table 3 with respect to accessions, genes, and names used (protein 

length and evidence for existence is presented also).  

https://www.uniprot.org/uniprot/?query=proteome:up000464024
https://www.ncbi.nlm.nih.gov/protein?term=(sars-cov-2%20Wuhan-Hu-1%20AND%20refseq%5Bfilter%5D)
https://www.ncbi.nlm.nih.gov/protein?term=(sars-cov-2%20Wuhan-Hu-1%20AND%20refseq%5Bfilter%5D)
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In general, PR uses SARS-CoV-2 protein names as given in UniProtKB and gene names 

as given in RefSeq, wherever these are available. A key difference between the PR 

representation and those of RefSeq and UniProtKB is that the former has a single record for each 

proteolytic cleavage product of the ORF1ab (aka rep) gene, while the latter resources each has 

two records for the subset of products that are encoded by both the polyprotein 1a (pp1a, aka 

ORF1a) and the polyprotein 1ab (pp1ab, aka ORF1ab) transcript (where the latter is the result of 

-1 ribosomal frameshifting). Both polyproteins are further processed by proteolytic cleavage; 

processing of either will yield ten identical chains (Figure 2A, light blue box), while one 

additional chain is unique to ORF1a and five additional chains are unique to ORF1ab (green 

boxes). In addition, PR unites each of the polyproteins under the grouping term ‘rep gene 

translation product’ (the synonym is used here to prevent confusion with the ORF1ab transcript-

derived polyprotein). Several proteins are translated from alternative ORFs within or overlapping 

transcripts that also produce longer proteins (red boxes). One of these, ORF9b, has been 

demonstrated (in SARS-CoV-1) to use leaky ribosome scanning [41]; potentially this mechanism 

applies to the others as well, though the existence of the ORFs labeled ‘putative’ is questionable 

[42]. All SARS-CoV-2 proteins are grouped under ‘severe acute respiratory syndrome 

coronavirus 2 protein’. In total—not counting the grouping terms—there are forty SARS-CoV-2-

related PR terms. Currently, none of these represent proteoforms with amino acid modifications; 

these will be added in the future. 

 

Ontological representation of SARS-CoV-2 amino acid variants  

In addition to the representation of viral variants, CIDO also defines and represents 

various amino acid (AA) variants. Similar to the viral variant definition, an AA variant is defined 

in CIDO as “An amino acid in a protein that varies from another amino acid in comparison to the 

reference protein”. CIDO further defines the object property ‘is characteristic AA variant’ to 

describe a relation between an AA variant and a protein where the AA variant is a characteristic 

AA variant of a specific viral variant. An AA variant is defined as characteristic when the 

presence of the AA can be used to identify the AA variant. We characterize these variants by 

comparing the amino acid at a given position to the reference wild-type strain. For example, the 

D614G mutation in the spike polyprotein (S:D614G) is well known for emerging in several 

VoCs and has been proven to increase SARS-CoV-2 infectivity [43].  The CIDO class ‘D-614G 
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in SARS-CoV-2 S protein’ (where S protein is the same as the spike protein) has the following 

axioms (Figure 2):  

‘D-614G in SARS-CoV-2 S protein’:  

- ‘characteristic AA variant of’ some ‘SARS-CoV-2 Omicron variant’ 

- ‘is a’ some ‘AA variant in SARS-CoV-2 S protein S1 RBD region’ 

- ‘has amino acid position’ value 614 

- ‘has part’ some ‘glycine residue’ 

- ‘has mutated from’ some ‘aspartic acid’ 

However, the above framework does not work well for describing characteristic deletions 

or other mutation events. As the amino acid that was deleted does not exist, this leads to issues 

where the ontology asserts that something holds of ‘all coronaviral amino acids’. To address this 

issue, we define the AA deletion as a process. Moreover, this variation process can be 

generalized to include any mutation event. The relationship between the deletion process and a 

resulting AA variant, is defined as:   

‘A888- deletion in SARS-CoV-2 S protein’: ‘is AA mutation of’ some ‘SARS-CoV-2 S 

protein’ 

and is shown in Figure 3. 

 

Host phenotype modeling in CIDO   

 CIDO contains terms for 18 symptoms and 22 comorbidities commonly found in 

COVID-19 patients [44]. These symptoms and comorbidities are mapped to phenotypes in the 

Human Phenotype Ontology (HP) from where they are imported back into CIDO. To link these 

symptoms and comorbidities as they occur in relation to COVID-19, we have also generated new 

relations ‘disease susceptibly has phenotype’ and ‘disease susceptibly severe with comorbidity’. 

The first relation represents the relation between a disease process and a phenotype where the 

person with the disease is susceptible to having that phenotype. The second is a shortcut relation 

between a disease process which is susceptible to becoming more severe when the patient has the 

comorbidity. Examples of usage of these relations are:   

SARS-CoV-2 disease process: ‘disease susceptibly has phenotype’ some Fever. 

SARS-CoV-2 disease process: ‘disease susceptibly severe with comorbidity’ some 

hypertension. 
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CIDO also represents the relation between SARS-CoV-2 variant and specific phenotypes, 

for example, the relation between the Delta variant and the formation of syncytia in lungs [45]:  

‘Delta variant disease process’: ‘bearer of disease susceptible to phenotype’ some 

syncytia  

We are in the process of evaluating and submitting some of our newly generated relations 

to the OBO Relation Ontology (RO) as they may be more appropriate for inclusion there. For 

example, we have submitted two new relation terms ‘evolves into’ and ‘evolves from’ to the RO 

issue tracker (https://github.com/oborel/obo-relations/issues/620). If these relations are added to 

RO, we will then obsolete our original CIDO relation terms and replace them with the new RO 

terms.  

 

Ontological modeling of epidemiology and public health  

CIDO includes many terms related to the epidemiology of COVID-19, derived primarily 

from the Infectious Disease Ontology (IDO) [23] and the Virus Infectious Disease Ontology 

(VIDO) [14]. Recent research [46, 47] highlights the importance of viral load to SARS-CoV-2 

transmission rates. Indeed, Wuhan, Delta, and Omicron strains are associated with distinct peak 

viral loads with respect to different demographics. VIDO characterizes ‘viral load’ as the 

proportion of virions to volume of a given portion of fluid in which the virions are located. 

VIDO provides a datatype property ‘has viral load measurement’ which supports representation 

of viral load values. For example, an instance of OBI’s class blood plasma specimen from an 

instance of a host infected by SARS-CoV-2 can be (partially) represented as having a viral load 

value in the following manner: 

‘blood plasma specimen 1’ rdf:type ‘blood plasma specimen’ 

and ‘has part’ some ‘SARS-CoV-2’ 

and ‘has viral load measurement’ value 108 

Additionally, VIDO provides virus-specific terminological content that can be extended 

in CIDO to represent other important epidemiological terms, such as COVID-19 prevalence, 

SARS-CoV-2 infectivity, and COVID-19 mortality rate.  

Moreover, CIDO includes resources needed for comparison of transmission differences 

among SARS-CoV-2 variants. The Omicron variant is significantly more transmissible than the 

reference Wuhan strain and Delta strain. The transmission rate is often represented using R0, the 

https://github.com/oborel/obo-relations/issues/620
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basic reproduction number that measures the transmissibility of infectious agents [48]. The 

average R0 values for the Wuhan reference strain, Delta strain, and Omicron BA.1 strain are 

2.69 [49], 5.02 [50], and 9.05 [51], respectively. Accordingly, we have generated a data property 

relation ‘has average R0’, which can be used to represent the R01 value of each variant:    

‘SARS-CoV-2 reference strain: ‘has average R0’ value 2.69  

‘SARS-CoV-2 Delta variant’: ‘has average R0’ value 5.02  

‘SARS-CoV-2 Omicron BA.1 variant’: ‘has average R0’ value 9.05  

 

COVID-19 diagnosis testing modeling in CIDO  

During a pandemic, the availability of fast and accurate diagnostic testing is essential to 

control the situation. Because SARS-COV-2 is a novel virus, the traditional pathway to approve 

a testing kit to be used in the market will not satisfy the urgent demand in a timely manner.  In 

the US, an Emergency Use Authorization (EUA) under Section 564 of the Federal Food, Drug, 

and Cosmetic Act (FD&C Act) allows the special authorization and use of drugs and other 

medical products during emerging infectious disease threats such as the COVID-19 pandemic. 

From 2020 March until now, the US Food and Drug Administration (FDA) has authorized 

hundreds of different types of in vitro diagnostic tests under the EUA authorizations. To make 

those EUA diagnostic testing data Findable, Accessible, Interoperable, and Reusable (FAIR) 

[28], it is important that the testing kits used are registered in a structured and machine-readable 

manner.  

CIDO comprises representations of 345 molecular and serological diagnostic tests 

authorized by the FDA. We created a term ‘COVID-19 diagnostic testing device’ and its child 

term ‘FDA EUA authorized COVID-19 diagnostic testing device’, where the latter is to be the 

home of all FDA EUA authorized In Vitro Diagnostics (IVD) tests for COVID-19.  

An example representation of  the TaqPath COVID-19 Combo Kit from Thermo Fisher 

Scientific, Inc., which was authorized under an EUA authorization  

(https://www.fda.gov/media/136113/download) is shown in Figure 4, which lays out the current 

CIDO representation of device, assay, diagnostic process and genes that the test is designed to 

detect. A device ‘TaqPath COVID-19 Combo Kit’ is ‘capable of’ a 'COVID-19 RT-PCR assay' . 

This test detects the existence of N, S and ORF-1ab gene regions that are part of the 

corresponding genes of the SARS-CoV-2 reference strain. We created a short-cut relation ‘PCR 

https://www.fda.gov/media/136113/download
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kit detects gene’ to represent a direct relationship between a diagnostic testing kit and the target 

gene/sequence fragments. Another short-cut relation ‘device utilizes material’ was created to link 

the diagnostic testing and the tested specimen. This relation can be logically represented as a 

property chain (https://github.com/oborel/obo-relations/issues/497): 

This particular diagnostic testing kit can utilize 6 specimen types, as again shown in 

Figure 4. The following axiom represent the ontological arrangement of such a relation using a 

union of 6 specimen terms:  

'device utilizes material' some ('nasopharyngeal swab specimen' or 'oropharyngeal swab 

specimen' or 'anterior nasal swab specimen' or 'mid-turbinate nasal swab specimen' or 

'nasopharyngeal aspirate specimen' or 'bronchial alveolar lavage') 

 

Using the strategy defined here, we systematically collected and used CIDO to model and 

represent over 300 molecular and serological diagnostic tests, including 225 SARS-CoV-2 RT-

PCR assays, authorized by US FDA. All the 343 tests are annotated with a total of ten COVID-

19 diagnostic technologies, such as RT-PCR, LAMP, Next Generation Sequencing, a CRISP-

based method, ELISA, lateral flow immunoassay, chemiluminescent, and so on. 

 

CIDO modeling and representation of host-coronavirus protein-protein interactions and 

drugs  

 CIDO represents over 300 experimentally verified host-coronavirus protein-protein 

interactions (PPIs), over 300 anti-coronaviral chemicals and/or their corresponding drugs, and 

over 400 drug targets. Here the coronaviral proteins may derive from SARS-CoV, MERS-CoV, 

or SARS-CoV-2. In early 2020, we performed literature mining and identified 110 chemical 

drugs and 26 antibodies effective, either in vitro or in vivo, against at least one human 

coronavirus infection, where the human coronaviruses involved are primarily SARS-CoV and 

MERS-CoV [52]. Our ontological representation, classification, and analysis of these drugs 

yielded many potentially valuable scientific insights. Since early 2020, we have collected more 

drugs and chemicals with a focus on those against SARS-CoV-2. Furthermore, we have collected 

and annotated representations of further PPIs and chemical-drug interactions. 

All CIDO-represented host-coronavirus PPIs are experimentally verified and reported in 

the literature. For example, CIDO has recorded 332 physically associated PPIs identified by the 

https://github.com/oborel/obo-relations/issues/497
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affinity-purification mass spectrometry assay [5]. These PPIs involve both proteins from the 

SARS-CoV-2 side and the host side, and many of these coronaviral and host proteins are also 

targets of multiple drugs.   

In CIDO, each host-coronavirus PPI is defined to have at least two participants, including 

one protein from a coronavirus and one from its host. For example, the ‘host-SARS-CoV-2 

protein-protein interaction’ is defined as: 

(‘has participant’ some ‘SARS-CoV-2 protein’) and (‘has participant’ some (organism 

and ‘has role’ some ‘host role’)) 

Figure 5 illustrates how CIDO represents hundreds of host-SARS-CoV-2 PPIs, drug 

active ingredients, and chemical-protein interactions. Specifically, there are three specific PPIs 

under the class ‘SARS-CoV-2 nsp5 protein interaction with host protein’, such as ‘SARS-CoV-2 

nsp5 protein binding to human HDAC2’. This example PPI has two participants: 

‘has participant’ some ‘3C-like proteinase (SARS-CoV-2)’ 

‘has participant’ some ‘histone deacetylase 2 (human)’ 

 Note that 3C-like proteinase, another name for nsp5, can be inhibited by the chemical 

nirmatrelvir, a component of the Pfizer drug Paxlovid. Human histone deacetylase 2 (i.e., 

HDAC2), can be inhibited by a chemical ‘Valproic Acid’, which has been found valuable against 

SARS-CoV-2 [53]. These relations are logically defined in CIDO as follows (Figure 5B and 

5C): 

   nirmatrelvir: ‘chemical inhibits protein’ some ‘3C-like proteinase (SARS-CoV-2)’ 

‘Valproic Acid’: ‘chemical inhibits protein’ some ‘histone deacetylase 2 (human)’  

 

Anti-coronavirus vaccine representation in CIDO   

As the developers of the Vaccine Ontology (VO) [54], we (YH, AL, AH, PH) first 

represented a total of over 100 COVID-19 vaccines at different stages (licensed, authorized, in 

clinical trials, or verified with laboratory animal models) in VO, and then imported these terms 

from VO to CIDO (Figure 1, Supplemental Table 2). In total, we have imported over 300 terms 

from the VO to CIDO. Furthermore, we have developed Cov19VaxKB, a web-based Integrative 

COVID-19 vaccine knowledge base, which has used ontologies including the VO to represent, 

classify, and analyze various COVID-19 vaccines and vaccine components (e.g., vaccine 

adjuvants), and vaccine adverse events [55]. We have also developed reverse vaccinology and 
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machine learning methods to predict vaccine antigen candidates [56]. The functions and immune 

mechanisms of these candidates are being further analyzed using ontology-based approaches 

[15]. Furthermore, we have been using CIDO and other ontologies including the Ontology of 

Adverse Events (OAE) to systematically examine adverse events associated with 

SARS/MERS/COVID-19 vaccine candidates.   

 

Clinical metadata type representation in CIDO  

To support classification and analysis of clinical data, CIDO includes representations of 

many clinical metadata types. Metadata is the data that provides information about other data. In 

our study of COVID-19 related clinical data, we have focused on two use cases: the analysis of 

vaccine adverse events using the VAERS data resource as described above and the analysis of 

the clinical data from the National COVID Cohort Collaborative (N3C) program [57]. The N3C 

system is a collection of harmonized clinical data on COVID-19 from contributing data partners. 

N3C data is represented using the OMOP common data model (CDM). In the OBO ontology 

point of view, OMOP still has its issues such as the lack of semantics, ambiguities, and hidden 

assumptions [58]. In our N3C related clinical data study, we have focused on the mapping of the 

OMOP CDM elements and OBO ontologies and add semantic relations among terms.  

Table 1 lists the representative clinical metadata types that are primarily mapped to the 

OMOP CDM elements. These are general clinical data types applicable to studies not only of 

COVID-19 but also of other human diseases. As a result, all these terms are imported from other 

reference OBO ontologies. The Ontology of Precision Medicine and Investigation (OPMI) [59, 

60], another OBO library ontology, has been used as a major reference ontology to represent 

those clinical data types not found in other OBO ontologies (Table 1). After the mapping of 

OMOP CDM elements to OBO ontologies, we imported these mapped terms to CIDO to support 

COVID-19 clinical data annotation and analysis.  

In the OMOP / N3C data structure, each concept set groups terms into what are called 

value sets. A value set is a set of codes selected from those defined by one or more code systems 

to specify which codes can be used in a particular context. However, their grouping is heuristic 

and not ontology-based. The ontology support is an ongoing project. OMOP2OBO is the first 

health system-wide integration and alignment system that systematically maps over 23,000 

concepts from OMOP standard clinical terminologies to OBO concepts [61]. While 
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OMOP2OBO is more focused on the value set mapping, our mapping and further term 

generation (Table 1) is more focused on the small set of the core OMOP CDM concept set meta 

elements. The two complementary systems can be used together to support robust clinical 

COVID-19 data annotation, integration, and analysis.   

 

Visual evolution analysis of CIDO    

To provide a condensed and comprehensive visualization of CIDO, we have previously 

developed a new Weighted Aggregate Partial-Area Taxonomy (WAT) summarization network 

method and used it to analyze an early version (version 1.0.108) of CIDO with a total of 5,138 

concepts [34]. Since then, newer versions of CIDO that include more concepts have been 

generated. To evaluate these new additions to CIDO, we have generated a new WAT 

summarization network that visualizes CIDO version 1.0.306 with 10,853 concepts (Figure 6). 

As shown in Figure 6, major branches of CIDO include infectious diseases, genes, vaccines, 

chemicals, and COVID-19 testing devices.  

Comparing the old version (Figure 2 in Supplemental File 1) with the new, we can 

identify which nodes had a considerable increase in the number of new descendant terms. For 

example, “COVID-19 vaccine” (120){48}[72] has been added to the ontology visualization 

(Figure 6). The number (120) means that the term “COVID-19 vaccine” includes 120 

descendant terms, with 48 of those aggregated from 48 descendant nodes of “COVID-19 

vaccine,” each of which has only one term (less than b=42), and 72 representing all other 

descendant terms of the large partial-area “COVID-19 vaccine” before the aggregation. By 

expanding this node in the manner supported by the OAF tool, we can see some interesting 

newly added vaccine terms such as “Pfizer–BioNTech COVID-19 vaccine”, “Moderna COVID-

19 vaccine”, “Oxford–AstraZeneca COVID-19 vaccine”, and “Nanocovax”. In contrast, the old 

version includes only one term for “COVID-19 vaccine” without any descendant term. Another 

example is “FDA EUA authorized COVID-19 diagnostic testing device” (345){229}[116] in 

Figure 6 including terms “COVID-19 Nucleic Acid RT-PCR Test Kit” and “BinaxNOWTM 

COVID-19 Ag Card Home Test” for which there are no corresponding terms in the old version. 
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Use Cases of CIDO  

CIDO has been proposed and used in many applications by us or the public community 

as exemplified by references [15, 44, 52, 62-67]. Five use cases of our own application of CIDO 

are introduced here.   

 

(1) Ontology-based coronavirus-related knowledge and data standardization, annotation, 

mapping, integration, and inferencing, supporting advanced COVID-19 data analysis 

As a reference ontology in the field of coronavirus infectious disease, CIDO provides a 

standard representation and definitions of terms and axioms in various areas related to COVID-

19 and other coronavirus diseases. The above sections have provided details on how CIDO 

standardizes and classifies terms and relations in different domains related to coronavirus 

diseases. Usage of the CIDO standard representation enhances data FAIRness, annotation, and 

integration.  

The COVoc Controlled Vocabulary for COVID-19 is an application ontology developed 

by the European Bioinformatics Institute (EMBL-EBI) and the Swiss Institute of Bioinformatics 

(SIB) in March 2020 [14]. The primary usage of COVoc is to enable seamless annotation of 

biomedical literature to core databases and tools at ELIXIR (a European-wide intergovernmental 

organization for life sciences). COVoc utilizes existing OBO ontologies and other vocabularies 

to augment connections to other useful resources such as the COVID-19 Data Portal 

(https://www.covid19dataportal.org/), as well as assisting in the curation and annotation of 

COVID-19 literature. CIDO has been working with COVoc to ontologize many terms in COVoc 

for better COVID-19 data annotations.  

In addition to the USA and Europe, CIDO has also been applied in many other countries 

including China. In China, CIDO has also been recommended as one of the semantic standards 

in areas related to clinical data integration and annotations by the National Population Health 

Data Center in China (NPHDC). It is included in their population health data archive (PHDA) 

[68] and provides ontology services in MedPortal [69]. And it has been also used for the 

construction of knowledge graphs about COVID-19 [70].   

Since CIDO incorporates multiple different types of knowledge about coronavirus 

diseases, it can be used both to query and infer new scientific insights and second to reason from 

analysis of clinical data. This reasoning is enabled by the structure of the knowledge base used 

https://www.covid19dataportal.org/
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by CIDO. CIDO provides  a T-box vocabulary, i.e., a general terminological constraints for 

representing COVID-19 phenomena. CIDO’s vocabulary can then be used to generate new data 

once instance-level data, the set of which in the knowledge base is called the A-box, has been 

ingested by the knowledge base. Data organized by CIDO is multiplied through this kind of 

inference enabled by the ontological axioms included within it.  

An example in our ontology-based clinical COVID-19 data analysis is our analysis of 

differential COVID-19 symptoms during the early pandemic [44]. In this study, we classified 

different symptom phenotypes in relation to pandemic locations, time periods, and comorbidities. 

The 18 most common COVID-19 symptoms were mapped to the HPO terms and imported to 

CIDO. Based on the HPO classification, we group these symptoms into further categories. For 

example, we grouped 4 COVID-19 related symptoms (nausea, vomiting, abdominal pain, and 

diarrhea) under abdominal system symptoms, and we grouped three symptoms (headache, loss of 

smell, and loss of taste) under nervous system symptoms. In addition, CIDO provides semantic 

representation of knowledge learned from clinical data analysis. An example is our 

representation of how symptoms and comorbidities are linked to COVID-19 disease [44]. Note 

that we emphasize the use of ‘susceptibility’ (a subclass of ‘disposition’) to represent this 

knowledge, for example when dealing with clinical phenotypes, vaccine/drug adverse events, 

and immune deficiency association.  

Another use case is the CIDO modeling of the molecular mechanisms of acute kidney 

injury (AKI) [71]. AKI is a commonly found phenotype among hospitalized COVID-19 patients. 

Our extensive literature mining and analysis of the BioGRID COVID-19 interaction data 

identified 3 key physiological processes (i.e., RAS activation, complement activation, and 

systemic inflammation) and many interactors like CD147, CD209, CypA, and MASP2 that are 

heavily implicated in these processes. CIDO was used to represent our analyzed results, leading 

to further understanding of the COVID-19 associated AKI mechanisms [71, 72].   

 

(2) CIDO queries for Delta and Omicron differences for better mechanistic understanding 

of virulence and transmission   

Among many SARS-CoV-2 variants, the Omicron strain is more transmissible but less 

virulent than the Delta strain, and both strains are more transmissible than the Wuhan reference 

strain [73-75]. We hypothesized that these differences reflect underlying differences in amino 
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acid (AA) variants. CIDO includes 92 specific CIDO terms representing characteristic mutations 

and 35 further mutations that are not considered as characteristic. CIDO allows for easy 

comparison of coronaviral AA variants that are associated with specific SARS-CoV-2 variants. 

To address the above hypothesis, we can perform specific queries to compare the AA variants in 

the two strains with the aim of uncovering the molecular mechanisms underlying the different 

phenotypes (Figure 7).   

Figure 7A shows a DL query that searches CIDO for the characteristic amino acid 

variants shared between SARS-CoV-2 Delta strain and Omicron strain. The results show four 

such variants: D614G and T478K in S protein, K856R in pp1a [nsp3] protein, and P314L in 

pp1b [nsp12] protein. S:D614G increases infectivity by allowing for a greater binding ratio of 

the S-protein trimer units to hACE2 [76]. T487K has similarly shown to increase the actual 

binding affinity to SARS-Cov-2 [77]. While the specific effects of K856R and P314L are 

unknown, both mutations are located in proteins responsible for viral replication [78, 79]. K856R 

is located in the region responsible for cleaving the non-structural proteins from pp1ab [78]. 

P314L however, is part of the RNA polymerase which is responsible for viral replication [79].  

Considering the significant role of S protein in binding and entry to the host cells, we 

hypothesize that Omicron has AA variants located in S protein that can explain the high 

transmission rate and high immune evasion of Omicron. Using the DL query, we found 45 AA 

variants in Omicron (Figure 7B), including 33 in S, 4 in pp1a, 3 in M, 2 in each of E and pp1b 

proteins, and 1 in N protein. Among these AA variants, many have been associated with changes 

in antibody recognition and consequently evasion. These include: S:E484K, S:N501Y, S:H69-, 

and S:144Y [76, 80-82] and are predominantly located on the N-Terminal Domain (NTD) of the 

S protein. The ribosomal binding domain of the S protein, however, has AA variants that affect 

binding to the S protein, and thus cell entry into SARS-CoV-2.  

As further evidence of how inferencing with CIDO may be used to generate novel 

information, a Description Logic (DL)-query further found 18 AA variants in the Delta strain 

(Figure 7C), including 10 in S protein, 3 in each of pp1b/nucleocapsid (N) proteins, and 1 in 

each of E/M/pp1a proteins. Compared to one AA variant (RG203KR) in the Omicron N protein, 

3 AA variants (D377Y, D63G, and R203M) exist in the Delta N protein. The SARS-CoV-2 

nucleocapsid (N) protein is an RNA-binding protein critical for viral genome packaging [83], 

and it is also involved in the coronavirus pathogenesis [84]. Delta was found to have reduced 
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pathogenicity due to altered cell tropism but less transmissibility and immune evasion ability 

[74]. The fact of more variants in the N protein in the Delta variant likely contributes to the 

differences in transmission and virulence.  

 

(3) CIDO-supported NLP for clinical and basic mechanism research 

Given the large volumes of COVID-19 related text in the literature and in electronic 

health records (EHRs), it is impossible for humans to extract useful information from what is 

available in a short period of time. In such cases, Natural Language Processing (NLP) is 

required, and ontology can be used to significantly enhance the performance of NLP [85-87]. 

Understanding how pathogen and host genes interact during infection can help to identify 

critical targets of intervention or prevention. In this connection CIDO has been used to support 

literature mining in relation to the molecular host-coronavirus interactions. SciMiner, our in-

house tool for mining scientific literature using dictionary- and rule-based methods [88], has 

been integrated with biomedical ontologies and applied to the study of vaccine-associated gene 

interaction networks [89, 90]. Using coronavirus-specific genes and proteins covered in CIDO 

and in the Interaction Network Ontology (INO) [91], we have applied SciMiner to perform 

literature mining on host-coronavirus interactions. Figure 8 illustrates a gene-gene interaction 

network we constructed in February 2022 using a subset of SciMiner mining results from >220K 

COVID-19-related articles in LitCovid [92]. Two noticeable subclusters were identified, largely 

related to viral invasion (right), involving S protein and host genes such as ACE2 and 

TMPRSS2, and host immune response (left), including cytokines and proinflammatory 

responses. This network summarizes the major host-pathogen interactions of SARS-CoV-2 virus 

and host and can be further expanded with other vaccine components and serve as the foundation 

for mining analyses.  

CIDO has also been used in EHR mining from clinical COVID-19 patient data in a 

recently proposed open NLP development framework that addresses the issues of NLP process 

heterogeneity and human factor variations [93]. A COVID-19 NLP algorithm was developed 

under the open NLP development framework. Specifically, the algorithm shared through the 

Open Health NLP (OHNLP) (https://github.com/OHNLP), was first used to identify COVID-19-

associated terms including various signs and symptoms (e.g., cough and fever) from the EHR 

notes of COVID-19 patients from three N3C participant institutions, including Mayo Clinic, the 

https://github.com/OHNLP
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University of Kentucky, and the University of Minnesota at Twin Cities. The identified terms 

were then mapped to the codes represented in CIDO. These codes are primarily imported from 

reference ontologies such as HPO and also cross-referenced to other ontologies or terminologies 

including UMLS [94], SNOMED-CT [95], MeSH [96], and MedDRA [97]. The usage of CIDO 

in the open NLP development framework supports the normalization of clinical NLP results 

from different N3C participant sites, leading to enhanced data integration and analysis in the 

future.   

 

(4) CIDO-based machine learning and drug cocktail design for COVID-19 treatment 

Anti-coronaviral drug design has been our first CIDO use case since the beginning of 

CIDO development [12] and we have systematically collected SARS/MERS/SARS-2 drug data 

for this purpose [52, 62], along with SARS-CoV-2 specific drug and host-coronavirus PPI data. 

These data have been used for machine learning and cocktail drug design as detailed below.    

The drug-target linkage knowledge recorded in CIDO has been used to support candidate 

COVID-19 drug prediction (Smaili et al, WCO-2020: https://github.com/CIDO-ontology/WCO). 

Specifically, the OPA2Vec machine learning method [98] was used to transform the CIDO 

knowledge and other related information to vectors, which were further used as the input to 

predict the drugs targeted for COVID-19. Our preliminary study found that the drugs against 

SARS-CoV-2 exhibit patterns which overlap with but are yet different from experimentally 

identified drug candidates against SARS-CoV and MERS-CoV [99]. More detailed information 

is being produced and analyzed.  

It is still a major challenge to develop a fully effective drug for COVID-19 treatment. 

Hundreds of chemicals and drugs have been experimentally verified to have anti-coronavirus 

function [52, 100]. Paxlovid from Pfizer, Molnupiravir from Merck, and Remdesivir [101] have 

been authorized for emergency usage; however, their effectivity remains low. In our previous 

paper, we proposed a host-coronavirus interaction (HCI) checkpoint cocktail that would interrupt 

the important checkpoints in the dynamic host-coronavirus interaction (HCI) network [62]. We 

hypothesized that such a cocktail of drugs would be more effective than the current COVID-19 

vaccines. The question is then how to design this cocktail by identifying the HCI checkpoints 

and inferring how to interrupt them.  

https://github.com/CIDO-ontology/WCO
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CIDO provides a solution to support rational HCI checkpoint classification and cocktail 

drug design as laid out in the above cocktail hypothesis. As earlier described and shown in 

Figure 5, CIDO logically represents host-coronavirus protein-protein interactions (PPIs) and 

drugs targeting the viral or host proteins in the PPIs. Different proteins and PPIs have different 

roles in the HCI leading to disease outcomes. Major checkpoints such as the coronavirus entry 

(through S-ACE2 binding) and replication can then be defined. Interestingly, all the three drugs, 

Paxlovid (consisting of nirmatrelvir and ritonavir), Molnupiravir, and Remdesivir function by 

inhibiting enzymes responsible for coronavirus replication. Specifically, nirmatrelvir inhibits 

SARS-CoV-2 3C-like protease (i.e., nsp5) to stop the virus from replicating (Figure 5), and 

ritonavir slows down nirmatrelvir’s breakdown to help keep it in the body for longer at higher 

concentrations. This 3C-like protease is responsible for cleaving polyproteins 1a and 1ab of 

SARS-CoV-2 into nonstructural proteins that are critical for viral replication. Molnupiravir and 

Remdesivir interfere with the action of RNA-directed RNA polymerase (RdRp), which is critical 

to viral replication as well. Based on our HCI checkpoint cocktail hypothesis, we would propose 

to include a drug targeting the viral entry, which can be used together with one of the existing 

drugs targeting the viral replication. A deeper CIDO-based study is ongoing to apply CIDO for 

the cocktail drug design.  

We (authors: ZW and YH) have implemented the cocktail strategy in our newly 

developed DrugXplore program (http://medcode.link/drugxplore/), which extends the OmicsViz 

program [8, 64]. Specifically, we used the host-coronavirus PPI and drug-target interaction data 

represented in CIDO and other resources such as BioGRID [102] to find drugs targeting different 

HCI processes. Figure 9 shows one result of our DrugXplore data analysis. A total of 232 drugs 

were identified to target three coronavirus processes (i.e., viral entry, genome replication, and 

viral release) and/or one host anti-coronaviral process (i.e., cytokine activity), and two drugs 

(i.e., copper and artenimol) were shared to target all four processes (Figure 9). Many reports 

have found copper and artenimol and their derivative drugs are potent potential drugs for 

COVID-19 treatment [103-108].   

 

Discussion 

This manuscript provides a comprehensive update on the development and applications 

of the community-based Coronavirus Infectious Disease Ontology (CIDO). Our study 

http://medcode.link/drugxplore/
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demonstrates that CIDO provides an ideal platform to integrate important data needed to 

research different coronavirus disease-related entities such as coronavirus and host taxonomy, 

coronavirus proteins and genes, protein variants, epidemiology, diagnostic medical devices, 

phenotypes, host-coronavirus interactions, drugs, and vaccines. The ontological representation of 

CIDO supports integrative representation and analysis of COVID-19 and other human 

coronavirus diseases. A visual evolution analysis of CIDO was performed. Five groups of CIDO 

applications are introduced, including COVID-19 data annotation and inferencing, Delta and 

Omicron comparisons, clinical data analysis, NLP, and COVID-19 drug repurposing.   

Given intensive coronavirus research in the COVID-19 pandemic, we have conducted 

very active CIDO development and applications. Within a little more than two years, CIDO has 

grown to include over 10,000 terms in which over 1,500 terms are CIDO specific. Meanwhile, 

we acknowledge that CIDO has not yet covered all related areas and some areas of 

representation (e.g., host-coronavirus interactions, epidemiology, and public health) are still not 

fully covered. Many applications (e.g., machine learning, N3C data analysis, and drug 

repurposing design) have started but still need more time to achieve breakthrough outcomes. 

However, we have demonstrated many progresses and achievements in different applications in 

this manuscript.   

An ongoing CIDO development effort is to actively model and represent various 

mechanisms of the molecular and cellular interaction between the hosts and coronaviruses. Such 

modeling will provide the foundation for our rational drug repurposing and vaccine 

development. For example, in our previous drug studies [52, 62], we extracted and analyzed the 

interactions between anti-coronavirus drugs and their target proteins. These anti-coronavirus 

drugs were identified to be effective against coronavirus infections in vitro or in vivo. It is likely 

that some of the drug targets participate in active host-SARS-CoV-2 interactions leading to 

severe COVID-19 disease outcomes. Deeper modeling and representation of the intricate host-

virus-drug interactions would help us in better drug repurposing analysis. 

We will continue our ontology harmonization effort to harmonize different COVID-19 

related ontologies [14]. We will continue to update CIDO to handle the description of 

coronaviral variants. This is to account for immune escape and for previously designed 

treatments and vaccines losing efficacy. We will keep using CIDO as a platform to standardize 

different coronavirus-related metadata types and apply them for the standardization and 
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enhanced analysis of specific conditions defined in different experimental and clinical studies, 

and how these conditions would affect the disease outcomes. We will also identify and develop 

more applications that implement CIDO for different purposes.  

Being a community-based ontology, CIDO is committed to serve the community and to 

draw on contributions from the community. CIDO is created to be open and freely available for 

use. It is an interoperable ontology that reuses and interlinks to existing ontologies and resources. 

We are always ready to accept new ideas and critiques. More researchers and developers are 

welcome to join our community-based effort to advance CIDO and its applications.  
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Figure Legends 
 

Figure 1. Top level hierarchical structure of class terms represented in CIDO. 

Abbreviations in parentheses indicate an entity’s source ontology (Supplemental Table 2).     

 

Figure 2. SARS-CoV-2 proteins and genes. (A) PR modeling of SARS-CoV-2 proteins. (B) 

OGG modeling of SARS-CoV-2 genes. Black lines represent the ‘has gene template’ relation 

connecting proteins to genes. Red boxes denote proteins translated from ORFs that are internal to 

or overlap with those of the longer indicated gene (red arrows). The light blue box indicates 

proteins that are produced by proteolytic processing of either replicase polyprotein 1a or 

replicase polyprotein 1ab, while green boxes indicate those that derive specifically and uniquely 

from pp1a or pp1ab.  

 

Figure 3. CIDO modeling of AA variants and mutations. CIDO represents AA variants as 

material entities if they are substitutions and AA mutations as processes to represent deletions in 

SARS-CoV-2 microbial variants. Both AA variants utilized analogous axioms due to differences 

in continuants and occurrents.  

 

Figure 4. Modeling of COVID-19 diagnostic testing using CIDO. *, only two out of six 

specimen terms are shown in this figure.  

 

Figure 5. Host-coronavirus protein-protein interactions (PPIs) and drugs targeting the 

viral or host proteins. (A) The hierarchy of PPIs, including ‘SARS-CoV-2 nsp5 protein binding 

to human HDAC2’. (B) The chemical nirmatrelvir (a component of the Pfizer drug Paxlovid) is 

an inhibitor of the virus protein nsp5 (i.e., 3C-like proteinase), which is critical for viral 

replication. (C) A chemical ‘Valproic Acid’ is an inhibitor of the HDAC2 (i.e., histone 

deacetylase 2). Valproic acid is also a valuable candidate against SARS-CoV-2.   

 

Figure 6. The weighted aggregate taxonomy (WAT) for CIDO (version 1.0.306) with 10,853 

concepts (b = 42). A white node inside a colored rectangular box represents a partial-area, which 

is a group of concepts having the same set of nonhierarchical (lateral) relationships and similar 
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semantics denoted by the concept listed inside the white node. Relationships are listed inside the 

colored box (inherited ones are not shown). The boxes are color-coded by cardinalities of their 

sets of lateral relationships. Upward arrows are the hierarchical relationships connecting partial-

areas. The weight of a partial-area is defined as the number of descendant concepts. A partial-

area with a weight less than b is small and is aggregated into its closest ancestor large partial-

area. A large partial-area having no aggregated partial-areas is represented as a rectangle white 

box with one number indicating the number of summarized concepts. A large partial-area having 

aggregated partial-areas is represented as a rectangle with rounded corners and with three 

numbers. The first number inside () is the number of summarized concepts including concepts 

aggregated from small partial-areas, the second number inside { } is the number of small partial-

areas aggregated into it, and the third number inside [ ] is the number of concepts of the partial-

area before the aggregation. See more details in Supplemental File 1.  

 

Figure 7. Query CIDO amino acid (AA) variants for Delta and Omicron strain comparison 

and basic transmission and virulence mechanism understanding. (A) DL query for AA 

variants shared by Delta and Omicron strains. (B) DL query for amino acid variants that belong 

to Omicron. (C) DL query for  amino acid variants that belong to Delta. Current AA variants for 

Omicron and Delta strains are also characteristic AA variants. 

 

Figure 8. Host-SARS-CoV-2 gene-gene interaction network using SciMiner on the litCovid 

paper abstracts. Color represents the type of genes: pink (viral), green (host gene directly co-

cited with pathogen genes at the sentence level), and cyan (host gene co-cited with the green host 

genes in at least 30 or more COVID-19 papers). Node size corresponds to the number of 

connections and edge thickness corresponds to the number of co-citing papers. 

 

Figure 9. SARS-CoV-2 drug screening based on the drug cocktail strategy. A total of 232 

drugs were identified to have their protein targets involving three coronavirus processes (i.e., 

viral entry, genome replication, and viral release) and/or host anti-coronaviral processes (i.e., 

cytokine activity). Two drugs (i.e., copper and artenimol) were shared to have protein targets 

involved in all four processes. The drug screening study was performed using the DrugXplore 

program (http://medcode.link/drugxplore/).   

http://medcode.link/drugxplore/
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Supplemental materials: 

 

Supplemental File 1. Visualization of the Evolution of CIDO. 

 

Supplemental Table 1. Resources used for our coronavirus disease-related data collection.   

 

Supplemental Table 2. CIDO statistics including terms imported from major reference 

ontologies.  

 

Supplemental Table 3. Protein Ontology representation of SARS-CoV-2 proteins. 

Comparative information in RefSeq and UniProtKB is also provided. 
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Figure 1. Top level hierarchical structure of class terms represented in CIDO.  Colored 

abbreviations in parentheses indicate an entity’s source ontology (Supplemental Table 1).     
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Figure 2. SARS-CoV-2 proteins and genes. (A) PR modeling of SARS-CoV-2 proteins. (B) 

OGG modeling of SARS-CoV-2 genes. Black lines represent the ‘has gene template’ relation 

connecting proteins to genes. Red boxes denote proteins translated from ORFs that are internal to 

or overlap with those of the longer indicated gene (red arrows). The light blue box indicates 

proteins that are produced by proteolytic processing of either replicase polyprotein 1a or 

replicase polyprotein 1ab, while green boxes indicate those that derive specifically and uniquely 

from pp1a or pp1ab.  
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Figure 3. CIDO modeling of AA variants and mutations. CIDO represents AA variants as 

material entities if they are substitutions and AA mutations as processes to represent deletions in 

SARS-CoV-2 microbial variants. Both AA variants utilized analogous axioms due to differences 

in continuants and occurrents.  
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Figure 4. Modeling of COVID-19 diagnostic testing using CIDO.  *, only two out of six 

specimen terms are shown in this figure. See the text for more detail.  
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Figure 5. Host-coronavirus protein-protein interactions (PPIs) and drugs targeting the 

viral or host proteins. (A) The hierarchy of PPIs, including ‘SARS-CoV-2 nsp5 protein binding 

to human HDAC2’. (B) The chemical nirmatrelvir (a component of the Pfizer drug Paxlovid) is 

an inhibitor of the virus protein nsp5 (i.e., 3C-like proteinase), which is critical for viral 

replication. (C) A chemical ‘Valproic Acid’ is an inhibitor of the HDAC2 (i.e., histone 

deacetylase 2). Valproic acid is also a valuable candidate against SARS-CoV-2.   
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Figure 6. The weighted aggregate taxonomy (WAT) for CIDO (version 1.0.306) with 10,853 

concepts (b = 42). A white node inside a colored rectangular box represents a partial-area, which 

is a group of concepts having the same set of nonhierarchical (lateral) relationships and similar 

semantics denoted by the concept listed inside the white node. Relationships are listed inside the 

colored box (inherited ones are not shown). The boxes are color-coded by cardinalities of their 

sets of lateral relationships. Upward arrows are the hierarchical relationships connecting partial-

areas. The weight of a partial-area is defined as the number of descendant concepts. A partial-

area with a weight less than b is small and is aggregated into its closest ancestor large partial-

area. A large partial-area having no aggregated partial-areas is represented as a rectangle white 

box with one number indicating the number of summarized concepts. A large partial-area having 
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aggregated partial-areas is represented as a rectangle with rounded corners and with three 

numbers. The first number inside () is the number of summarized concepts including concepts 

aggregated from small partial-areas, the second number inside { } is the number of small partial-

areas aggregated into it, and the third number inside [ ] is the number of concepts of the partial-

area before the aggregation. See more details in Supplemental File 1.    
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Figure 7. Query CIDO amino acid (AA) variants for Delta and Omicron strain comparison 

and basic transmission and virulence mechanism understanding. (A) DL query for AA 

variants shared by Delta and Omicron strains. (B) DL query for amino acid variants that belong 

to Omicron. (C) DL query for  amino acid variants that belong to Delta. Current AA variants for 

Omicron and Delta strains are also characteristic AA variants. 
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Figure 8. Host-SARS-CoV-2 gene-gene interaction network using SciMiner on the litCovid 

paper abstracts. Color represents the type of genes: pink (viral), green (host gene directly co-

cited with pathogen genes at the sentence level), and cyan (host gene co-cited with the green host 

genes in at least 30 or more COVID-19 papers). Node size corresponds to the number of 

connections and edge thickness corresponds to the number of co-citing papers. 
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Figure 9. SARS-CoV-2 drug screening based on the drug cocktail strategy. A total of 232 

drugs were identified to have their protein targets involving three coronavirus processes (i.e., 

viral entry, genome replication, and viral release) and/or host anti-coronaviral processes (i.e., 

cytokine activity). Two drugs (i.e., copper and artenimol) were shared to have protein targets 

involved in all four processes. The drug screening study was performed using the DrugXplore 

program (http://medcode.link/drugxplore/).   

 

 

http://medcode.link/drugxplore/
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Table 1. Representative clinical metadata types covered in CIDO. All listed examples are 

considered classes in the ontology. 

 

Metadata types Metadata Examples 

person (NCBITaxon_9606) person ID (OPMI_0000470), gender (PATO_0001894), year of birth 

(OPMI_0000473), race (NCIT_C17049 ), ethnicity (NCIT_C16564 ), 

care site (OPMI_0000479), geographic location (GAZ_00000448)  

specimen (OBI_0100051) specimen ID  (OBI_0001616), date of specimen collection 

(OBIB_0000714), anatomical structure (UBERON_0000061) 

visit occurrence 

(OPMI_0000482) 

visit occurrence identifier (OPMI_0000483), visit start date 

(OPMI_0000487), visit end date (OPMI_0000488), preceding visit 

occurrence (OPMI_0000492), ER visit (OPMI_0000486) 

procedure occurrence 

(OPMI_0000505) 

procedure (NCIT_C25218), procedure start date (OPMI_0000508), 

procedure end date (OPMI_0000510), care provider (OPMI_0000163)  

drug exposure (OPMI_0000572) 

and device exposure 

(OPMI_0000554) 

drug (CIDO_0000167), drug exposure start time (OPMI_0000565), 

drug exposure end time (OPMI_0000567), medical device 

(NCIT_C16830), diagnostic kit (CIDO_0000453)  

clinical measurement 

(CMO_0000000) 

clinical measurement identifier (OPMI_0000582), care provider 

(OPMI_0000163), measurement time (OPMI_0000579), measurement 

unit label (IAO_0000003), measurement date (OPMI_0000580) 

observation period 

(OPMI_0000575) 

observation period start date (OPMI_0000577),  

observation period end date (OPMI_0000578),  

provenance of observation record (OPMI_0000522) 

 

 

 


