
### Ontological Representation and Analysis of the Molecular Interactions Related to COVID-19-associated Acute Kidney Injury

#### Ghida Arnous, Yongqun "Oliver" He, Ph.D.

University of Michigan, Ann Arbor, MI





## Results

| Host<br>protein | Entrez Gene<br>ID | Viral<br>protein | Evidence code/role/HT 1          | ref PubMed/or DOI 1            | Evidence code/role/HT 2          | ref PubMed ID 2                |
|-----------------|-------------------|------------------|----------------------------------|--------------------------------|----------------------------------|--------------------------------|
| SERPINE2        | 5270              | ORF8             | Proximity Label-MS, BAIT, High   | doi: 10.1101/2020.09.03.282103 |                                  |                                |
| SERPINE2        | 5270              | М                | Affinity Capture- MS, BAIT, High | 33845483                       |                                  |                                |
| ITGAL           | 3683              | ORF7A            | Reconsituted complex, BAIT, Low  | 18020948                       |                                  |                                |
| KIT             | 3815              | ORF3A            | Affinity Capture- MS, BAIT, High | 2838362                        |                                  |                                |
| CLDN1           | 9076              | ORF7B            | affinity Capture- MS, BAIT, High | 33845483                       | proximity Label-MS, BAIT, High   | doi: 10.1101/2020.08.28.272955 |
| CLDN1           | 9076              | М                | proximity Label-MS, BAIT, High   | doi: 10.1101/2020.08.28.272955 |                                  |                                |
| CLDN1           | 9076              | S                | proximity Label-MS, BAIT, High   | doi: 10.1101/2020.08.28.272955 |                                  |                                |
| LRP2            | 4036              | NSP4             | proximity Label-MS, BAIT, High   | doi: 10.1101/2020.08.28.272955 | proximity Label-MS, BAIT, High   | doi: 10.1101/2020.08.28.269175 |
| LRP2            | 4036              | ORF3A            | proximity Label-MS, BAIT, High   | doi: 10.1101/2020.12.31.424961 | proximity Label-MS, BAIT, High   | doi: 10.1101/2020.08.28.272955 |
| LRP2            | 4036              | ORF3B            | proximity Label-MS, BAIT, High   | doi: 10.1101/2020.08.28.272955 | , , , , ,                        |                                |
| LRP2            | 4036              | ORF7B            | proximity Label-MS, BAIT, High   | doi: 10.1101/2020.08.28.272955 |                                  |                                |
| SLC5A2          | 6524              | ORF7A            | proximity Label-MS, BAIT, High   | doi: 10.1101/2020.12.31.424961 |                                  |                                |
| LILRB2          | 10288             | S                | reconsituted complex, HIT, High  | doi: 10.1101/2020.09.09.287508 |                                  |                                |
| ROBO1           | 6091              | ORF7B            | proximity Label-MS, BAIT, High   | doi: 10.1101/2020.08.28.272955 | proximity Label-MS, BAIT, High   | doi: 10.1101/2020.09.03.282103 |
| ROBO1           | 6091              | М                | proximity Label-MS, BAIT, High   | doi: 10.1101/2020.08.28.272955 | 1 1 1 1                          |                                |
| ROBO1           | 6091              | NSP4             | proximity Label-MS, BAIT, High   | doi: 10.1101/2020.08.28.272955 |                                  |                                |
| ROBO1           | 6091              | ORF3A            | proximity Label-MS, BAIT, High   | doi: 10.1101/2020.08.28.272955 |                                  |                                |
| ROBO1           | 6091              | ORF3B            | proximity Label-MS, BAIT, High   | doi: 10.1101/2020.08.28.272955 |                                  |                                |
| ROBO1           | 6091              | S                | proximity Label-MS, BAIT, High   | doi: 10.1101/2020.08.28.272955 |                                  |                                |
| SATB2           | 23314             | NSP9             | proximity Label-MS, BAIT, High   | doi: 10.1101/2020.08.28.272955 |                                  |                                |
| ROBO2           | 6092              | М                | proximity Label-MS, BAIT, High   | doi: 10.1101/2020.08.28.272955 |                                  |                                |
| ROBO2           | 6092              | ORF3A            | proximity Label-MS, BAIT, High   | doi: 10.1101/2020.08.28.272955 |                                  |                                |
| ROBO2           | 6092              | ORF7B            | proximity Label-MS, BAIT, High   | doi: 10.1101/2020.08.28.272955 |                                  |                                |
| ROBO2           | 6092              | S                | proximity Label-MS, BAIT, High   | doi: 10.1101/2020.08.28.272955 |                                  |                                |
| MYH11           | 4629              | NSP2             | proximity Label-MS, BAIT, High   | 34709727                       |                                  |                                |
| MYH11           | 4629              | NSP7             | proximity Label-MS, BAIT, High   | 34709727                       |                                  |                                |
| MYH11           | 4629              | NSP9             | proximity Label-MS, BAIT, High   | doi: 10.1101/2020.09.03.282103 |                                  |                                |
| ALDOB           | 229               | ORF3A            | affinity Capture- MS, BAIT, High | 32838362                       |                                  |                                |
| SH3GL3          | 6457              | М                | proximity Label-MS, BAIT, High   | doi: 10.1101/2020.12.31.424961 | proximity Label-MS, BAIT, High   | doi: 10.1101/2020.08.28.272955 |
| SH3GL3          | 6457              | ORF6             | affinity Capture- MS, BAIT, High | 32838362                       |                                  |                                |
| FBLN5           | 10516             | NSP9             | affinity Capture- MS, BAIT, High | 32353859                       | affinity Capture- MS, BAIT, High | 33060197                       |
| MCAM            | 4162              | ORF7B            | affinity Capture- MS, BAIT, High | doi: 10.1101/2020.12.31.424961 | proximity Label-MS, BAIT, High   | doi: 10.1101/2020.08.28.269175 |
| MCAM            | 4162              | ORF3B            | proximity Label-MS, BAIT, High   | doi: 10.1101/2020.08.28.269175 |                                  |                                |
| MCAM            | 4162              | S                | proximity Label-MS, BAIT, High   | doi: 10.1101/2020.09.03.282103 |                                  |                                |
| PLAT            | 5327              | ORF8             | affinity Capture- MS, BAIT, High | 32353859                       | affinity Capture- MS, BAIT, High | 33060197                       |
| SYNPO2          | 171024            | NSP13            | proximity Label-MS, BAIT, High   | doi: 10.1101/2020.09.03.282103 | , , ,                            |                                |

| Pathway name                                                                              | Curated<br>found | Curated<br>Total | Interactor<br>found | Interactor<br>Total | Entities<br>found | Entities<br>Total | Entities<br>ratio | Entities<br>pValue |
|-------------------------------------------------------------------------------------------|------------------|------------------|---------------------|---------------------|-------------------|-------------------|-------------------|--------------------|
| SLIT2:ROBO1 increases RHOA activity                                                       | 1                | 8                | 0                   | 0                   | 1                 | 8                 | 0                 | 1.18E-2            |
| Signaling by ROBO receptors                                                               | <u>4</u>         | 235              | 1                   | 406                 | 4                 | 618               | 0.028             | 1.26E-2            |
| Role of ABL in ROBO-SLIT signaling                                                        | 1                | 10               | 0                   | 0                   | 1                 | 10                | 0                 | 1.47E-2            |
| Inactivation of CDC42 and RAC1                                                            | 1                | 12               | 0                   | 0                   | 1                 | 12                | 0.001             | 1.76E-2            |
| Activation of RAC1                                                                        | 1                | 15               | 0                   | 0                   | 1                 | 15                | 0.001             | 2.19E-2            |
| Regulation of cortical dendrite branching                                                 | 2                | 4                | 0                   | 159                 | 2                 | 163               | 0.007             | 2.42E-2            |
| Transport of RCbI within the body                                                         | 1                | 14               | 0                   | 3                   | 1                 | 17                | 0.001             | 2.48E-2            |
| Cargo recognition for clathrin-mediated endocytosis                                       | 2                | 115              | 0                   | 59                  | 2                 | 166               | 0.007             | 2.5E-2             |
| Sema4D induced cell migration and growth-cone collapse                                    | 1                | 25               | 0                   | 0                   | 1                 | 25                | 0.001             | 3.63E-2            |
| GRB7 events in ERBB2 signaling                                                            | 0                | 6                | 1                   | 22                  | 1                 | 26                | 0.001             | 3.77E-2            |
| Sema4D in semaphorin signaling                                                            | 1                | 31               | 0                   | 0                   | 1                 | 31                | 0.001             | 4.48E-2            |
| Clathrin-mediated endocytosis                                                             | 2                | 161              | 0                   | 87                  | 2                 | 231               | 0.01              | 4.57E-2            |
| Signaling by KIT in disease                                                               | 1                | 28               | 0                   | 8                   | 1                 | 35                | 0.002             | 5.04E-2            |
| Signaling by phosphorylated juxtamembrane, extracellular and<br>kinase domain KIT mutants | 1                | 28               | 0                   | 8                   | 1                 | 35                | 0.002             | 5.04E-2            |
| InIB-mediated entry of Listeria monocytogenes into host cell                              | 1                | 19               | 0                   | 22                  | 1                 | 38                | 0.002             | 5.46E-2            |
| Modulation by Mtb of host immune system                                                   | 0                | 11               | 1                   | 29                  | 1                 | 38                | 0.002             | 5.46E-2            |
| PLC-gamma1 signalling                                                                     | 0                | 5                | 1                   | 37                  | 1                 | 41                | 0.002             | 5.88E-2            |
| Cellular hexose transport                                                                 | 1                | 28               | 0                   | 13                  | 1                 | 41                | 0.002             | 5.88E-2            |
| PLCG1 events in ERBB2 signaling                                                           | 0                | 6                | 1                   | 37                  | 1                 | 42                | 0.002             | 6.02E-2            |
| Activated NTRK3 signals through PLCG1                                                     | 0                | 5                | 1                   | 37                  | 1                 | 42                | 0.002             | 6.02E-2            |

Fig. 1. Reactome analysis of 17 AKI biomarkers found 2 genes involved in ROBO signaling (ROBO1 and ROBO2), likely important in AKI mechanism<sup>4.</sup>

**Table 1.** Interactions between 17 ACST+B kidney biomarkers and SARS-CoV-2 proteins from BioGRID.



By using ASCT+B and BioGRID, we found 17 biomarkers (out of 146) interacting with 14 SARS-CoV-2 viral proteins, yielding a total of 36 interactions.

# Coronavirus Infectious Disease Ontology (CIDO) modelling

Asserted -SARS-CoV2 nsp4 protein binding to human TIMM9 SARS-CoV-2 Nsp5 protein interaction with host protein SARS-CoV-2 Nsp6 protein interaction with host protein SARS-CoV-2 Nsp7 protein interaction with host protein SARS-CoV-2 Nsp8 protein interaction with host protein SARS-CoV-2 Nsp9 protein interaction with host protein SARS-CoV-2 Orf10 protein interaction with host protein SARS-CoV-2 orf3a protein interaction with host protein SARS-CoV-2 orf3b protein interaction with host protein SARS-CoV-2 orf6 protein interaction with host protein SARS-CoV-2 orf7a protein interaction with host protein SARS-CoV-2 orf7b protein interaction with host protein SARS-CoV-2 ORF7B binding to human protein CLDN1 SARS-CoV-2 ORF7B binding to human protein LRP2 SARS-CoV-2 ORF7B binding to human protein MCAM SARS-CoV-2 ORF7B binding to human protein ROBO1 SARS-CoV-2 ORF7B binding to human protein ROBO2 SARS-CoV-2 Orf8 protein interaction with host protein SARS-CoV-2 Orf9b protein interaction with host protein

SARS-CoV-2 Orf9c protein interaction with host protein

| 20-2286-9<br>@ & (         | definition                                                               |                          |
|----------------------------|--------------------------------------------------------------------------|--------------------------|
| 2 <u>0-2286-9</u><br>@ & ( | A molecular interaction that has participant of the SARS-CoV-2 orf7b pro | otein and a host protein |
| @ & (                      | 'definition source'                                                      | $\odot$                  |
|                            | https://www.nature.com/articles/s41586-020-2286-9                        |                          |
| ost protein PIMI           | 'term editor'                                                            | $@\times$                |
| ost proteín Pilli          | Ghida Arnous, Oliver He                                                  |                          |
| ost protein 200            |                                                                          |                          |
|                            | cription: SARS-CoV-2 orf7b protein interaction with host protein         | 201                      |
|                            | uivalent To 🕀                                                            |                          |
|                            |                                                                          |                          |
|                            | IbClass Of +                                                             |                          |
|                            |                                                                          |                          |
| n (SARS-CoV-2)'            | • 'has participant' some 'ORF7b protein (SARS-CoV-2)'                    | ?@×                      |

**Fig. 2.** CIDO-based classification and hierarchy of newly added SARS-CoV-2 and host PPIs. 5 out of 36 of the PPIs are shown in the above figure, particularly the interactions with ORF7B protein. Associated annotations are also shown on the right.

Our CIDO-based ontological representation provides a systematic and computer-interpretable logic knowledge representation of the molecular interactions related to COVID-19-associated AKI mechanisms.

#### Summary and next steps

We collected and analysed proteins and interactions related to COVID-19 associated AKI.

Each of the 17 kidney biomarkers recorded in ASCT+B Kidney table has demonstrated interaction(s) with SARS-CoV-2 viral protein(s), suggesting that the coronavirus closely interacts with the kidney biomarkers.

SLITs and ROBO signalling, found in our host-coronavirus interaction study, are likely associated with COVID-19 associated kidney injury.

The human-coronavirus PPIs are ontologically represented in the CIDO ontology, which can be further enhanced and used to support COVID-19 related AKI studies.